Towards Safer, Faster Prenatal Genetic Tests: Novel Unsupervised, Automatic and Robust Methods of Segmentation of Nuclei and Probes
نویسنده
چکیده
In this paper we present two new methods of segmentation that we developed for nuclei and chromosomic probes – core objects for cytometry medical imaging. Our nucleic segmentation method is mathematically grounded on a novel parametric model of an image histogram, which accounts at the same time for the background noise, the nucleic textures and the nuclei’s alterations to the background. We adapted an Expectation-Maximisation algorithm to adjust this model to the histograms of each image and subregion, in a coarse-to-fine approach. The probe segmentation uses a new dome-detection algorithm, insensitive to background and foreground noise, which detects probes of any intensity. We detail our two segmentation methods and our EM algorithm, and discuss the strengths of our techniques compared with state-of-the-art approaches. Both our segmentation methods are unsupervised, automatic, and require no training nor tuning: as a result, they are directly applicable to a wide range of medical images. We have used them as part of a large-scale project for the improvement of prenatal diagnostic of genetic diseases, and tested them on more than 2,100 images with nearly 14,000 nuclei. We report 99.3% accuracy for each of our segmentation methods, with a robustness to different laboratory conditions unreported before.
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSegmentation and Evaluation of Fluorescence Microscopy Images
This dissertation presents contributions to the automation of cell image analysis, in particular the segmentation of fluorescent nuclei and probes, and the evaluation of segmentation results. We present two new methods of segmentation of nuclei and chromosomal probes – core objects for cytometry medical imaging. Our nucleic segmentation method is mathematically grounded on a novel parametric mo...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006